Vision-based interaction with virtual worlds for the design of

robot, controllers

D. d’Aulignac, V. Callaghan and S. Lucas
Department of Computer Science,

University of Essex,
Colchester CO4 35Q, UK

Abstract

This paper discusses the use of simulated robots
in a virtual table tennis environment. Specifi-
cally, the use of a two-segment arm for the con-
trol of a bat and the possibilities of using vision
as a human-computer interface are investigated.
The motivation of this work is to provide a tool
to test robot controllers in a challenging environ-
ment to perform non-repetitive tasks. The ben-
efits of such research include the development
of controllers that are able to operate in non-
ordered, unpredictable environments, e.g. haz-
ardous environments.

1 Introduction

Currently there is much interest in neural net-
works for control of real robots. However, to
experiment with real systems requires expen-
sive hardware which is often difficult to set up
and modify. The alternative is to use simula-
tors which will help to cut down on cost and
development time.

This was one of the main reasons that led to
the first implementation of a virtual table tennis
environment [1]. However, in this version forces
are directly applied to the bat, without worrying
who or what would achieve this. Work by [5] has
produced a robotic arm simulator to test neural
networks for hand-eye coordination. We used
part of this work to integrate a simple robotic
arm into our simulation. Thus forces are not
applied directly to the bat, since the latter is
coupled to the end-effector of the arm.

Neural networks have been designed or
evolved for solving control problems, and sepa-
rately for strategy games such as tic-tac-toe. Ta-
ble tennis provides an interesting mix of control

=] Nice | = 0]

Figure 1: Screen-shot of the display client.

problems and strategy problems, making the de-
sign of good players extremely challenging.

The rest of this paper describes the virtual
environment in Section 2; Section 3 describes
the human, vision-based controller; Section 4
explains the neural network based approaches
used to solve the control of the arm. In Sec-
tion 5 the possible developments of this project
are discussed, before Section 6 concludes on the
results so far.

2 The Virtual Environment

Here we choose a 2-dimensional simulated table
tennis game as our environment. The table is
viewed from the side, with the net located in the
middle, and the bats and robotic arms operating
in a plane. Figure 1 shows a screen-shot of the
display client which visualises the state of the
game.

The simulator is implemented in an object-
oriented style using C++ and uses sockets to
communicate with the controller and display

Sateof theball Angleslet robot
Contoll gien] Aoy | ST | g
(Clava.) foownam (N
Ball position

Sateaf therobot ams

Figure 2: Diagram showing the messages ex-
changed between clients and server

clients. These are normally implemented in
Java to exploit Java’s platform independence
and networking capabilities. Figure 2 shows how
these communicate with each other: the simula-
tion server sends the current state (position and
velocity) of the ball and each of the segments
that make up the robotic arm, and expects back
an acceleration value for each of the links in the
arm from the controller client. To play a game
two controllers will have to be connected. If dis-
play clients are connected the current position
of the arms and the ball will be sent to them.
Hence, the implementation has three aspects:
the simulation model acting as the server, and
the display and controller that are the clients.

2.1 World model server

The world model needs to take into account
both the logical model, which defines the rules
of the game, and the physical model, that is re-
sponsible for applying the laws of physics to the
objects in the game. The responsibilities of the
logical model are to detect the end of a point,
the winner of the point, and decide which player
currently has the service. For detecting the end
of a point, and the winner of the point, it in-
teracts with the physical model, which updates
the dynamic objects and monitors their colli-
sions with the static objects (table, net, floor,
and ceiling). After each collision the physical
model informs the logical model in order to up-
date its state.

2.1.1 The ball

The ball is a dynamic yet passive object, which
gets hit around according to the laws of physics.
The physical model accurately describes most
of the features of the real game (except for the
missing third dimension) including gravity, air
resistance, the effects of spin on ball trajectory
and collisions, and the coefficients of friction be-
tween bat and ball and between table and ball.
These effects can also be switched off in order

link 1

%
iﬁg <= joint1
‘ ‘:XO (rotational)

" link O (virtual)

Figure 3: Assigning frames to the robot.
(Adapted from a figure in [5])

i|0; | a;|a(cm) | d;(cm)

116:(0 50 0

216:] 0 50 0
Table 1: Denavit-Hartenberg table for the
robot.

to provide a simpler game environment if neces-
sary.

2.1.2 The bats

The bats are active dynamic objects. On colli-
sion with the ball they will change the trajectory
of the latter depending on the bat’s velocity, an-
gle, and mass. For the purpose of introducing
spin we assume that the ball always rolls and
never slides on the bat, due to the friction of
the material used to manufacture modern bats.

2.1.3 The arm

The robot arm is a two-segment arm. To fit
into the 2-dimensional simulation it has rota-
tional joints only operating in a plane. The as-
signment of frames to links is chosen in accor-
dance with [2] (see Figure 3). The corresponding
Denavit-Hartenberg table is given in Table 1.
Applying accelerations on the links results in
the movement of the arm; the kinematics of
robot arm are examined for this. Homogeneous
matrix transforms are used to work out the di-
rect kinematics for the arm, i.e. the position
of the links in Cartesian space. To work out
the velocity of the end-effector (important since

the bat is attached to it) we used the recursive
Newton-Euler Formulation, which works out the
velocities from the base to the tip of the manip-
ulator. We choose this method since it is the
computationally much more effective than its
closed form. Throughout the system it is aimed
for a rigourous use of the SI units which would
make an eventual hardware implementation in
the future as easy as possible.

2.2 Display Client

This is used to display an animated view of a
game. For the machine based controllers it is
entirely unnecessary, and games can be played
much faster without one (this being advanta-
geous, for example, when evolving controllers,
which requires to play many games). How-
ever, it is useful to observe the traits of various
machine-based players in order to better under-
stand their strength and weaknesses. Also, it is
essential if it is required to allow human players
to play.

2.3 Controller Client

The controller will receive and up-to-date state
of the world model, including position and ve-
locity of the ball, bats, and arms and is then ex-
pected to return the accelerations on the links
of the arm it controls.

vision-based human

3 A

controller

The basic idea behind the visual interaction for
the control of the simulated robot arm is to
colour code the joints on the human arm cap-
tured by the camera. This will make it possible
to find the position of the joints with respect to
each other.

To find out where in the image the coloured
patches marking the joints are, we find the Eu-
clidean distance in the HSI space between every
pixel in the image to the colour we are looking
for. We then assume the pixel with the small-
est distance from the colour we are seeking is
the corresponding label. Knowing where the la-
bels are we can work out the angles using simple
trigonometry. These are then sent to the sim-
ulation via the socket. The advantage of using
the HSI colour space over the RGB format is
that we can eliminate the intensity of a pixel [4].

Thus we get better colour constancy over vary-
ing lighting conditions. We ignore pixels with
very small intensity values, since the colour of
very dark regions is ambiguous. Also very bright
light can cause problems since ‘white spots’ may
appear making it hard or impossible to identify
the colour correctly. The latter is correlated to
the reflective properties of the material used for
the colour patches.

During normal operation, target joint values
#4 are detected from the visual input. The de-
sired velocities to move the joints to the target
is defined by ;. The accelerations 6, are set
such as to attain the velocities 8. Thus, the
values 04, 84, and 64 specify the new path. This
new path results, at the following time slot, in
the setting of the current acceleration § to 6.
The acceleration is maintained at this level until
either § = 6, or & = 6,. In the former case, 6
is set to 0 until & = #;. In the latter, both 6
and 6 must be set to 0 to stop the robot. The
correct value for #; must be given, and a 0 for
8, to implement this.

Although the main reason for implementing
this vision-based controller was to provide train-
ing data for supervised neural networks, an
added benefit of this is that it becomes possi-
ble to play virtual table-tennis with two human
players over the network, assuming that we have
two SGI machines with cameras.

4 Neural Network Based
Controllers

The main aim is to design robot controllers and
train them to play a ‘good’ game. Two ap-
proaches were tested. Firstly, a single network
was used and trained by the human, vision-
based controller. For this approach the multi-
layer perceptron (MLP) was used. For the sec-
ond approach the task was divided into a small
number of neural networks. Each network was
trained to do a particular task. Then, they were
all combined to integrate a player.

4.1

A realistic input vector for a neural network
would be the position and velocity of the ball,
and the position and velocity of the segments in
the arm that it controls. The output would con-
sist of the acceleration applied to the arm seg-
ments and the torque that is applied to the bat.

Inputs and Outputs

However, for simplicity at this stage the torque
is ignored. We are just interested in moving the
arm, while leaving the bat at a fixed angle. Us-
ing the human, vision-based controller a set of
training patterns is produced. This should in-
clude as many representative cases as possible.

4.2 Single Module Network

The results of the single module network, at
first, appeared to be strange. The MLP was
trained on the training data, and repeatedly
tested on the test data until the test-set error
reached a minimum. These learned weights were
then hard-wired into a robot controller to play
in an actual game. The network generally per-
formed poorly, frequently missing the ball and
resting at one position without moving.

The most probable cause of this is that while
the network behaves well in the regions which
the human player has explored, it has no reason
to behave well outside of these regions. As soon
as the neural network begins to stray from what
the human controller has done in a given situa-
tion, the problem accumulates — and the arm
is rapidly sent into regions of the input space
where the human has never explored.

Perhaps a further problem is the pseudo-
random behaviour of the human player (i.e.,
there is no unique way to play a shot) and that
the arm controled by the human remains mostly
in a ‘resting position’ after playing a shot and
waiting for the opponent to execute his. If a
lot of the outputs are the same the easiest way
for the MLP to minimise the error is to assume
outputs are constant. This results in the arm
controlled by this neural network to remain at
this resting position without much other move-
ment.

4.3 Modular neural networks

The second approach is to decompose the task
into a number of smaller tasks. Each smaller
task can then be handled by an independent
specialist neural network. With this modular
approach, it is of course possible to have differ-
ent modules based on different paradigms. Also,
modularity is of paramount importance in good
engineering design. In this way, it is possible
to identify which neural network modules are
performing well and which ones are performing
poorly.

connections to/from other modules

forward P _backward
output ">~ Nh, ~ input
RE
OW
forward i ‘n'put . backward output

connections from/to another module

Figure 4: A general forward-backward node.

We decompose the problem into three parts:
prediction of the intercept positions, prediction
of intercept velocities and movement of the arm
to achieve the desired intercept.

4.3.1 Prediction of desired intercept po-

sitions

To find the positions of the segments in the arm
such that the bat on the end effector will inter-
cept the ball we use the experiences provided
by the human, vision-based controller. As in-
puts we take the position and velocity of the
ball when it leaves the opponents bat, and the
outputs are the positions of the arm. An MLP
is used to predict the positions to intercept,
trained on the recorded experiences form the
human player. This implicitly solves the inverse
kinematics for the intercept points. The MLP
accurately predicts the intercepts for shots that
are not far outside the input space it has been
trained upon.

4.3.2 Prediction of desired intercept ve-
locities

Based again on the human, vision-based con-
troller, another MLP is trained on the velocities
of the links in the arm at the intercept. The ve-
locities on the links must be such so as to return
a good shot. For this task, neural networks have
been trained successfully. Thus, if we cheat and
warp the arm to the desired position with the
desired velocity for each link at the correct time,
we have a combination of two neural networks
that can play.

new veloci

new position ty
(to next module)

(to next module)

from target value
at final timestep

from target value
at final timestep

@ €
(s2)

® o ‘e

@)
OO

current position
(from last module)

current velocity
(from last module)

Figure 5: Forward cycle of module that updates
position and velocity according to their initial
values and the acceleration

4.3.3 Moving the arm

The third network module has the task of mov-
ing the arm over successive time intervals in or-
der that at the time of intercept, the arm has the
desired position and velocity. To achieve this we
use forward backwards modules [3].

The general form of the forward-backward
module is shown in Figure 4. It computes func-
tion f for its forward behaviour. For its back-
ward behaviour it computes the derivative f’ of
the function with respect to the input (or the
partial derivative w.r.t. that particular input),
multiplies it by the accumulated backward error
(in the ¥ cell) and passes it back to its backward
output.

At each time-step the position and velocity of
the segments in the arm are updated according
to Newtonian laws, which are well known. If
the acceleration at each time-step and the num-
ber of time-steps is knows, it is possible to find
the final position and velocity. The idea is that
given the error in position and velocity after the
final time-step, it is possible to back-propagate
this error through the network to make the cor-
responding adjustments to the acceleration ap-
plied at each time-step.

Figure 5 shows the forward cycle of a module
that updates the velocity and position of a link
in the arm according to Newton’s Laws.

Figure 6 shows the backward cycle of a mod-
ule that updates the acceleration according to
the derivative of the final error in position and
velocity with respect to the acceleration. Since

to next module to next module

Figure 6: Backwards cycle of module that up-
dates the acceleration according to the deriva-
tive of the final error in position and velocity
with respect to the acceleration

16000

s ermor —
v error ----

14000
12000
10000
8000 3
6000 j“\,‘
4000 |

2000 ¥

0

Figure 7: The mean-squared-error from the
target values for position and velocity plotted
against the number of iterations

the error normally is reduced over several time-
steps, there will be as many modules as there
are time-steps. The modules are connected to
each other as shown in the figures.

Thus, for example, if one segment of the arm
was at position 0.0 and velocity 0.0, but the tar-
get position and velocity in 200 time-steps was
90.0 and —90.0 respectively, the link would have
to move past the 90.0 degrees mark, only then
to move back again to achieve the —90.0 veloc-
ity at the final time-step. In Figure 7 it can be
seen how both the mean-squared-error in posi-
tion and velocity decreases over 20 iterations.
The mean-squared-error after 100 iterations is
3.41331e796 for the position and 1.06807e 2% for
the velocity.

5 Discussion

We are at the stage where a multi-module neu-
ral network can play and game of table ten-
nis within its current environment. The next
stage in the work is to take the most success-
ful neural network individuals and apply tour-
nament based evolutionary methods to evolve
better players.

The current implementation of the game has
been designed to be an accurate simulation of
a real, but 2-dimensional, table tennis environ-
ment. There are several ways the set-up can be
varied. The game can be made simpler by elim-
inating the effects of spin and air resistance. Al-
ternatively, the parameters which control these
can be adjusted to increase their effect, hence
making the game more difficult.

Other ways in which the game can be made
more difficult are: extend the simulation to
three dimensions; limit the amount of compu-
tation allowed for each controller at each time-
step. The latter would have the effect of favour-
ing controllers that not only play a good game,
but do so within some bounded amount of com-
putation. Both these ideas, of course, are es-
sential in the sense of using the evolved con-
trollers in a real-time, 3-dimensional world such
as ours. Before these are explored, however,
there is plenty of scope for improving the per-
formance of current robot players.

6 Conclusions

This paper has described a framework that al-
lows the development and evaluation of robot
controllers in a simulated table-tennis environ-
ment. From the experiments conducted we con-
clude that using a single neural network, trained
on the experiences provided by a human player
through the vision-based interface, is largely un-
successful. Better results can be achieved by
dividing the task into smaller sub-tasks, thus
simplifying the problem but also ensuring mod-
ularity, which allows to test modules separately.
This provides us with a better insight into the
operation of the controller.

Already the project has generated a good deal
of interest on the Internet. Hopefully, with the
introduction of this new version of the simula-
tor, allowing controllers to connect to a server
via a network, the added ease of use will en-
courage more people to submit their controllers

to an Internet-based tournament. It would be
interesting and could be insightful which type of
architecture performs best.

Finally, this kind of work provides a natural
bridge into the design of real robot game play-
ers (i.e. to play table tennis against each other,
and/or against humans on a real table tennis ta-
ble). By developing the details of the robot con-
troller in a virtual environment, much of the de-
sign work can be done much more quickly than
if having to deal with real robots.

Acknowledgements This work was partially
supported by post-graduate EPSRC grant (Ref:
96419892) and UK EPSRC grant GR/J86209.

Related web sites For more information
on the project visit our project home-page:
http://peipa.essex.ac.uk/vase/projects/table-
tennis/

References

[1] D. d’Aulignac, A. Moschovinos and S. Lu-
cas. Virtual table tennis and the design of
neural network players. In Intl Conf. on
Artificial Neural Networks and Genetic Al-
gorithms, April 1997.

[2] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee.
Robotics: Control, Sensing, Vision, and In-
telligence. McGraw-Hill, 1987.

[3] S.M. Lucas. Forward-backward building
blocks for evolving neural networks with in-
trinsic learning behaviours. In Lecture Notes
in Computer Science (1240): Biological and
artificial computation: from neuroscience to
technology, pages 723 — 732. Springer-Verlag,
Berlin, (1997).

[4] R. Jain, R. Kasturi, and B. G. Schunck. Ma-
chine Vision. McGraw-Hill, 1995.

[5] P. van der Smagt. Simderella: a robot simu-
lator for neuro-controller design. Neurocom-
puting, 1994.

