Virtual table tennis and the design of neural network players

D. d’Aulignac, A. Moschovinos and S. Lucas
Department of Electronic Systems Engineering,
University of Essex,

Colchester CO4 35Q, UK

email sml@essex.ac.uk

Abstract

This paper discusses the design of a virtual table-
tennis environment, and the design of neural net-
work based controllers to play in that environment.
The motivation behind the work is to provide an
interesting and entertaining forum in which to carry
out research on adaptive control and planning prob-
lems that stretch the limits of current neural network
paradigms.

1 Introduction

Currently there is much interest in neural networks
and genetic programming methods for control of real
robots. However, to experiment with such things
requires expensive hardware that can be time con-
suming to set up and maintain. An alternative to
experimenting with real robots is to experiment with
virtual robots. The complexity of designing control-
lers for such virtual robots depends on the ‘physics’ of
the virtual environment, and the task at hand. This
paper describes the design of a virtual table-tennis
environment and some initial work on the design of
algorithmic and neural network based bat controllers.

Neural networks have been designed or evolved
for solution for control problems (e.g. [1, 2] and
separately, for strategy games such as OXO [3].
Table tennis (or for that matter, any racquet sport)
provides an interesting mix of control problems and
strategy problems, making the design of good play-
ers extremely challenging. In a recent tournament
of table tennis for real robots, rallies were extremely
few and far between. By concentrating on the design
within a virtual environment, however, we have con-
trol over exactly how difficult to make the game, and
at least for the initial stage, we can ignore completely
problems of visually tracking the ball and accurate
actuation of the robot.

The rest of this paper is structured as follows: sec-

tion 2 describes the simulated environment; section 3
describes the design of an algorithmic controller; sec-
tion 4 describes the results of some experiments with
neural network controllers; section 5 discusses some of
issues arising from the work and future possibilities;
section 6 concludes.

2 The Simulated Environment

Here we choose a 2-dimensional simulated table ten-
nis game as our environment. This is implemented
in an object-oriented style. The system was initially
implemented in C++ for both Unix and Windows
platforms, but is currently being ported to Java, to
exploit Java’s platform independence and superior
networking capabilities.

The implementation model has three aspects, the
logical model, the physical model and the graphical
model.

2.1 Logical model

This defines the rules of the game. The responsib-
ilities of the logical model are to detect the end of
the game, detect the end of a point, and the winner
of the point, and decide which player currently has
service. For detecting the end of a point, and the
winner of that point, it interacts with the physical
model. The logical model contains a state machine
for this purpose. The states correspond to the logic-
ally distinct states of the game, such as left_serve,
right_serve, left_bat, right_bat, left_table, right_table,
left_wins, right_wins etc. The actual state table is
a little more complex than this, since the rule gov-
erning a serve is different to the normal run of the
game. Each time the physical model detects a col-
lision between the ball and the table (either left or
right side), the net, and the left or right bat, a state
transition is made depending on the object that the
ball collided with.



2.2 Physical Model

The physical model is responsible for applying the
laws of physics to the objects in the game. To do this
it must update the dynamic (ball and bats) objects
and monitor their collisions with each other and with
the static objects (table, net, floor and ceiling). After
each collision the physical model informs the logical
model in order to keep the state machine updated.

2.2.1 The ball

The ball is dynamic yet passive object, which gets hit
around according to the laws of physics. The physical
model accurately describes most of the features of the
real game (except for the missing third dimension)
including gravity, air resistance, the effects of spin on
ball trajectory and collisions, and the coefficients of
friction between bat and ball and between table and
ball. These effects can also be switched off in order
to provide a simpler game environment if necessary.

2.2.2 The bats

The bats are active dynamic objects. Each bat has
an associated bat controller. The bat controller must
implement a method called getForce that takes as
parameters the current bat position vector, the pos-
ition of the opponent’s bat, the position of the ball
and a boolean variable to indicate whether or not it
is this players turn. Of course, velocity and accelera-
tion information is also useful to the bat controller —
but this can be derived from successive values of the
position.

2.3 Graphical Model

This is used to display an animated view of a game.
For the machine based controllers it is entirely unne-
cessary, and games can be played much faster without
one. However, it is useful to observe the traits of vari-
ous machine-based players in order to better under-
stand their strengths and weaknesses. Also, it is
essential if it is required to allow human players to
play against machine-based opponents.

3 An algorithmic controller

Given the above simulated environment, it is possible
to make accurate predictions of ball trajectory, make
decisions on where to intercept the ball, which shot to
play when there, and then make a perfect execution
of the chosen shot. It may seem that such a controller
should never lose a point, but this is not the case. We
limit the force that can be applied to the bat at each

time instant, and hence, not all shots are possible,
and if a bat can be caught out of position it may
even be unable to make contact with the ball.

We have implemented an algorithmic controller
based on the above ideas, and as expected, it plays a
good game of table tennis — it is difficult for human
players to win a point against it.

The main reason for implementing an algorithmic
controller was to provide training data for super-
vised neural networks. To make it more interest-
ing, and to provide more varied training data for the
networks, the algorithmic controller makes pseudo-
random choices regarding the point at which to inter-
cept the ball, and the shot to execute when there.

4 Neural Network Based Con-
trollers

The main aim was to design neural networks and train
them to play a 'good’ game. Two approaches were
tested. Firstly, a single network was used and trained
by the algorithmic controller. For this approach both
multilayer perceptron (MLP) and radial basis func-
tion (RBF) architectures were tested. For the second
approach the task was divided into a small number
of neural networks. Each network was trained to do
a particular task. Then, they were all combined to
integrate a player. For this case an MLP was used.

4.1 Inputs and Outputs

A realistic input vector for a neural network would
be the position and velocity of the ball, and the pos-
ition and velocity of the bat it handles. An output
vector would consist of the forces (in x and y coordin-
ates) and the torque that the controller applies to its
bat. However, for simplicity at this stage the torque
is ignored. We are just interested in moving the bat,
while leaving at a fixed angle. Using the algorithmic
controller a set of training pattern pairs can be pro-
duced. This should include as many representative
cases as possible.

4.2 Single Module Newtork

The results of the single module networks at first
appeared to be strange. Both the RBF and MLP
networks were trained on the training data, and
repeatedly tested on the test data until the test-set
error reached a minimum. In the case of each net-
work, this was a reasonably small error (of the order
of 0.001 mean square error). These learned weights
were then hard-wired into a bat controller to play in



an actual game. The RBF marginally outperformed
the MLP, but both networks (many different configur-
ations of each one were experimented with) generally
performed poorly compared to the algorithmic con-
troller — frequently missing the ball or hitting it way
off the table, and on some occasions, even appearing
to actively avoid the ball.

The most probable cause of this is that while the
network behaves well in the regions of input space
which the algorithmic controller inhabits, it has no
reason to behave well outside of these regions. As
soon as the neural network begins to stray from what
the algorithmic controller would have done in a given
situation, the problem then accumulates — and the
bat is rapidly sent into regions of input space where
the algorithmic controller has never explored.

Perhaps a further problem is the pseudo-random
behaviour of the bat controller. The neural network
models are capable of approximating functional map-
pings, but the data given to them is not of this nature
if we include a random element in the algorithmic
controller, since, given identical input conditions, the
algorithmic controller can produce different outputs®.

However, the neural networks still performed
significantly better when trained on the random
algorithmic controller than when trained on a non-
random version. Perhaps the best possibility is to
simply generate a large number of random input
training vectors together with what the algorithmic
controller would output given those inputs, but we
have not yet done this.

4.3 Modular neural networks

The second approach to implement a neural network
player is to decompose the task into a number of smal-
ler tasks. Each smaller task can then be handled by
an independent specialist neural network. With this
modular approach, it is of course possible to have dif-
ferent modules based on different paradigms — there is
no need for all modules to be neural networks. During
development of the system, it is sensible to begin with
an algorithmic module for each task. Having checked
that this functions well, each module can then be
replaced in turn by its neural network alternative. In
this way, it is possible to identify which neural net-
work modules are performing well and which ones are
performing poorly.

We decompose the problem into three parts: pre-
diction of the intercept point, calculation of intercept

1Unless the random variable is included in the set of inputs
to the neural network — though this would further complicate
the mapping to be learned.

vector and movement of bat to achieve the desired
intercept.

4.3.1 Calculation of desired intercept point

The first step is to have a network which can predict
some point of interception. This involves predicting
the position of the intercept and the time at which the
ball will be at that position. This is chosen to be the
highest point of the trajectory in which the player is
allowed to hit the ball. An MLP is used for this stage
and actually predicts the point of interception very
accurately. Inputs to the network is the position and
velocity of the ball when leaving from the opponents
bat. The outputs are the z, y and time of the pre-
dicted intercept. The training set was produced from
the outputs of the algorithmic controller, designed to
estimate the highest point of the trajectory. An MLP
with a single hidden layer of 22 neurons proved to be
good enough for this task.

4.3.2 Calculation of desired intercept velo-
city

Based again on the outputs of the algorithmic control-
ler, targets can be derived to train an MLP to output
what velocity the bat should have at the predicted
point. This velocity must be such so as to return a
good shot. For this task, neural networks have also
been trained successfully. Thus, if we cheat and warp
the bat to the desired point with the desired velocity
at the correct time, we have a combination of two
neural networks which can play as good as the robots
(i.e. a game lasting for more than 20 hits!).

4.3.3 Moving the bat

The third network module has the task of moving the
bat over successive time intervals in order that at the
time of intercept, the bat has the desired position and
velocity. Describe the action of this one.

However, another network must be trained so as
to apply legal force to move the bat to arrive at the
desired point at the correct time with the correct velo-
city. A neural network for this has been designed
but not yet tested. It seems likely that by employ-
ing a modular decomposition of the problem we shall
be able to develop a highly proficient neural network
bat controller — one that plays as well as the original
algorithmic controller. This leads on to the next step
— evolving superior players.



5 Discussion

We are almost at the stage where a multi-module
neural network can play a good game of table ten-
nis within the current environment. The next stage in
the work is to take the most successful neural network
individuals and apply tournament based evolutionary
methods to evolving successively better individuals.

The current implementation of the game has been
designed to be an accurate simulation of a real, but
2-dimensional, table tennis environment. There are
several ways the set up can be varied. The game
can be made simpler by eliminating the effects of air
resistance and spin. Alternatively, the parameters
which control these can be adjusted to increase their
effect, hence making the game more difficult.

Other ways in which the game can be made more
difficult are: extend the simulation to a three dimen-
sional environment; make the robot controllers act
on some multi-segment robot arm in order to control
the bat, rather than applying forces directly to the
bat as they do now; limit the amount of computation
allowed for each controller at each timestep. This
would have the effect of favouring controllers who
could not only play a good game, but do it within
some bounded amount of computation. Before these
are explored, however, there is plenty of scope for
improving the performance of the current robot play-
ers.

There has been a good deal of interest around the
world in our virtual table tennis project, and it is
planned to hold an internet-based virtual table ten-
nis tournament. The idea is that people wishing to
enter a competitor would submit the code for their
controller (having already developed it and tested it
on their own machine) — the newly submitted control-
ler would then be pitted against a league of all the
best controllers so far submitted, and if sufficiently
successful, earn its own place in the league or other-
wise be discarded. Over time it would be interesting
to see the type of architectures that dominate the
tournament, and the kind of games they play. To
facilitate this, we are currently porting the simulator
to JAVA, and also working out details of a GUI-based
neural network controller design system.

6 Conclusions

This paper has described a framework that allows
the development and evaluation of robot controllers
for a simulated table-tennis environment. The cur-
rent status of the project is that algorithmic control-
lers have been designed that play a good game of
virtual table tennis. The initial experiment to train

a single feed-forward neural network to play virtual
table tennis was largely unsuccessful, with the single
neural controller struggling to maintain a rally of
more than about 2 shots, hence proving no match
for the algorithmic controller.

The modular neural networks are far more prom-
ising, and a successful bat controller has been con-
structed using a neural network for prediction of the
intercept point, a neural network for the calculation
of the intercept velocity, and an algorithmic module
for seeing that the bat achieves the desired intercept
velocity at the chosen place and time.

Already the project has generated a good deal of
interest on the internet. This will hopefully increase
when the Java version of the simulator becomes avail-
able, which will include a system for the interact-
ive design of robot controllers, and an easy means
for people to participate in an internet-based tourna-
ment.

Finally, this kind of work provides a natural bridge
into the design of real robot game players (i.e. to
play table tennis against each other, and/or against
humans on a real table tennis table). By developing
the details of the robot controller in a virtual envir-
onment, much of the design work can be done much
more quickly than if having to deal with real robots.
Although not a feature of the current implementa-
tion, it is of course possible to implement models of
real robots within our simulated environment.

Related www sites

For more information on the project and related links,
or to download our table tennis simulator, visit our
project home-page: http://giwww.essex.ac.uk/

References

[1] A. Wieland, “Evolving controls for unstable sys-
tems,” in Proceedings of the 1990 Connectionist
Models Summer School (D. Touretzky, J. Elman,
T. Sejnowski, and G. Hinton, eds.), pp. 91 — 102,
San Francisco: Morgan Kaufman, (1990).

[2] F. Gruau, D. Whitley, and L. Pyeatt, “A compar-
ison between cellular encoding and direct encod-
ing for genetic neural networks,” Neuro-colt tech-
nical report series NC-TR-96-048, (1996).

[3] D. Fogel, “Using evolutionary programming to
create networks that are capable of playing tic-
tac-toe,” in Proceedings of IEEFE International
Conference on Neural Networks, pp. 875 — 880,
San Francisco: IEEE, (1993).



