
Virtual table tennis and the design of neural network players

D� d�Aulignac� A� Moschovinos and S� Lucas

Department of Electronic Systems Engineering�

University of Essex�

Colchester CO� �SQ� UK

email sml�essex�ac�uk

Abstract

This paper discusses the design of a virtual table�
tennis environment� and the design of neural net�
work based controllers to play in that environment�
The motivation behind the work is to provide an
interesting and entertaining forum in which to carry
out research on adaptive control and planning prob�
lems that stretch the limits of current neural network
paradigms�

� Introduction

Currently there is much interest in neural networks
and genetic programming methods for control of real
robots� However� to experiment with such things
requires expensive hardware that can be time con�
suming to set up and maintain� An alternative to
experimenting with real robots is to experiment with
virtual robots� The complexity of designing control�
lers for such virtual robots depends on the �physics� of
the virtual environment� and the task at hand� This
paper describes the design of a virtual table�tennis
environment and some initial work on the design of
algorithmic and neural network based bat controllers�
Neural networks have been designed or evolved

for solution for control problems �e�g� ��� �	 and
separately� for strategy games such as OXO �
	�
Table tennis �or for that matter� any racquet sport�
provides an interesting mix of control problems and
strategy problems� making the design of good play�
ers extremely challenging� In a recent tournament
of table tennis for real robots� rallies were extremely
few and far between� By concentrating on the design
within a virtual environment� however� we have con�
trol over exactly how di�cult to make the game� and
at least for the initial stage� we can ignore completely
problems of visually tracking the ball and accurate
actuation of the robot�
The rest of this paper is structured as follows sec�

tion � describes the simulated environment� section 

describes the design of an algorithmic controller� sec�
tion � describes the results of some experiments with
neural network controllers� section � discusses some of
issues arising from the work and future possibilities�
section � concludes�

� The Simulated Environment

Here we choose a ��dimensional simulated table ten�
nis game as our environment� This is implemented
in an object�oriented style� The system was initially
implemented in C�� for both Unix and Windows
platforms� but is currently being ported to Java� to
exploit Java�s platform independence and superior
networking capabilities�
The implementation model has three aspects� the

logical model� the physical model and the graphical
model�

��� Logical model

This de�nes the rules of the game� The responsib�
ilities of the logical model are to detect the end of
the game� detect the end of a point� and the winner
of the point� and decide which player currently has
service� For detecting the end of a point� and the
winner of that point� it interacts with the physical
model� The logical model contains a state machine
for this purpose� The states correspond to the logic�
ally distinct states of the game� such as left serve�

right serve� left bat� right bat� left table� right table�

left wins� right wins etc� The actual state table is
a little more complex than this� since the rule gov�
erning a serve is di�erent to the normal run of the
game� Each time the physical model detects a col�
lision between the ball and the table �either left or
right side�� the net� and the left or right bat� a state
transition is made depending on the object that the
ball collided with�



��� Physical Model

The physical model is responsible for applying the
laws of physics to the objects in the game� To do this
it must update the dynamic �ball and bats� objects
and monitor their collisions with each other and with
the static objects �table� net� �oor and ceiling�� After
each collision the physical model informs the logical
model in order to keep the state machine updated�

����� The ball

The ball is dynamic yet passive object� which gets hit
around according to the laws of physics� The physical
model accurately describes most of the features of the
real game �except for the missing third dimension�
including gravity� air resistance� the e�ects of spin on
ball trajectory and collisions� and the coe�cients of
friction between bat and ball and between table and
ball� These e�ects can also be switched o� in order
to provide a simpler game environment if necessary�

����� The bats

The bats are active dynamic objects� Each bat has
an associated bat controller� The bat controller must
implement a method called getForce that takes as
parameters the current bat position vector� the pos�
ition of the opponent�s bat� the position of the ball
and a boolean variable to indicate whether or not it
is this players turn� Of course� velocity and accelera�
tion information is also useful to the bat controller �
but this can be derived from successive values of the
position�

��� Graphical Model

This is used to display an animated view of a game�
For the machine based controllers it is entirely unne�
cessary� and games can be played much faster without
one� However� it is useful to observe the traits of vari�
ous machine�based players in order to better under�
stand their strengths and weaknesses� Also� it is
essential if it is required to allow human players to
play against machine�based opponents�

� An algorithmic controller

Given the above simulated environment� it is possible
to make accurate predictions of ball trajectory� make
decisions on where to intercept the ball� which shot to
play when there� and then make a perfect execution
of the chosen shot� It may seem that such a controller
should never lose a point� but this is not the case� We
limit the force that can be applied to the bat at each

time instant� and hence� not all shots are possible�
and if a bat can be caught out of position it may
even be unable to make contact with the ball�
We have implemented an algorithmic controller

based on the above ideas� and as expected� it plays a
good game of table tennis � it is di�cult for human
players to win a point against it�
The main reason for implementing an algorithmic

controller was to provide training data for super�
vised neural networks� To make it more interest�
ing� and to provide more varied training data for the
networks� the algorithmic controller makes pseudo�
random choices regarding the point at which to inter�
cept the ball� and the shot to execute when there�

� Neural Network Based Con�

trollers

The main aim was to design neural networks and train
them to play a �good� game� Two approaches were
tested� Firstly� a single network was used and trained
by the algorithmic controller� For this approach both
multilayer perceptron �MLP� and radial basis func�
tion �RBF� architectures were tested� For the second
approach the task was divided into a small number
of neural networks� Each network was trained to do
a particular task� Then� they were all combined to
integrate a player� For this case an MLP was used�

��� Inputs and Outputs

A realistic input vector for a neural network would
be the position and velocity of the ball� and the pos�
ition and velocity of the bat it handles� An output
vector would consist of the forces �in x and y coordin�
ates� and the torque that the controller applies to its
bat� However� for simplicity at this stage the torque
is ignored� We are just interested in moving the bat�
while leaving at a �xed angle� Using the algorithmic
controller a set of training pattern pairs can be pro�
duced� This should include as many representative
cases as possible�

��� Single Module Newtork

The results of the single module networks at �rst
appeared to be strange� Both the RBF and MLP
networks were trained on the training data� and
repeatedly tested on the test data until the test�set
error reached a minimum� In the case of each net�
work� this was a reasonably small error �of the order
of ����� mean square error�� These learned weights
were then hard�wired into a bat controller to play in



an actual game� The RBF marginally outperformed
the MLP� but both networks �many di�erent con�gur�
ations of each one were experimented with� generally
performed poorly compared to the algorithmic con�
troller � frequently missing the ball or hitting it way
o� the table� and on some occasions� even appearing
to actively avoid the ball�

The most probable cause of this is that while the
network behaves well in the regions of input space
which the algorithmic controller inhabits� it has no
reason to behave well outside of these regions� As
soon as the neural network begins to stray from what
the algorithmic controller would have done in a given
situation� the problem then accumulates � and the
bat is rapidly sent into regions of input space where
the algorithmic controller has never explored�

Perhaps a further problem is the pseudo�random
behaviour of the bat controller� The neural network
models are capable of approximating functional map�
pings� but the data given to them is not of this nature
if we include a random element in the algorithmic
controller� since� given identical input conditions� the
algorithmic controller can produce di�erent outputs��

However� the neural networks still performed
signi�cantly better when trained on the random
algorithmic controller than when trained on a non�
random version� Perhaps the best possibility is to
simply generate a large number of random input
training vectors together with what the algorithmic
controller would output given those inputs� but we
have not yet done this�

��� Modular neural networks

The second approach to implement a neural network
player is to decompose the task into a number of smal�
ler tasks� Each smaller task can then be handled by
an independent specialist neural network� With this
modular approach� it is of course possible to have dif�
ferent modules based on di�erent paradigms � there is
no need for all modules to be neural networks� During
development of the system� it is sensible to begin with
an algorithmic module for each task� Having checked
that this functions well� each module can then be
replaced in turn by its neural network alternative� In
this way� it is possible to identify which neural net�
work modules are performing well and which ones are
performing poorly�

We decompose the problem into three parts pre�
diction of the intercept point� calculation of intercept

�Unless the random variable is included in the set of inputs

to the neural network � though this would further complicate

the mapping to be learned�

vector and movement of bat to achieve the desired
intercept�

����� Calculation of desired intercept point

The �rst step is to have a network which can predict
some point of interception� This involves predicting
the position of the intercept and the time at which the
ball will be at that position� This is chosen to be the
highest point of the trajectory in which the player is
allowed to hit the ball� An MLP is used for this stage
and actually predicts the point of interception very
accurately� Inputs to the network is the position and
velocity of the ball when leaving from the opponents
bat� The outputs are the x� y and time of the pre�
dicted intercept� The training set was produced from
the outputs of the algorithmic controller� designed to
estimate the highest point of the trajectory� An MLP
with a single hidden layer of �� neurons proved to be
good enough for this task�

����� Calculation of desired intercept velo�

city

Based again on the outputs of the algorithmic control�
ler� targets can be derived to train an MLP to output
what velocity the bat should have at the predicted
point� This velocity must be such so as to return a
good shot� For this task� neural networks have also
been trained successfully� Thus� if we cheat and warp
the bat to the desired point with the desired velocity
at the correct time� we have a combination of two
neural networks which can play as good as the robots
�i�e� a game lasting for more than �� hits���

����� Moving the bat

The third network module has the task of moving the
bat over successive time intervals in order that at the
time of intercept� the bat has the desired position and
velocity� Describe the action of this one�

However� another network must be trained so as
to apply legal force to move the bat to arrive at the
desired point at the correct time with the correct velo�
city� A neural network for this has been designed
but not yet tested� It seems likely that by employ�
ing a modular decomposition of the problem we shall
be able to develop a highly pro�cient neural network
bat controller � one that plays as well as the original
algorithmic controller� This leads on to the next step
� evolving superior players�



� Discussion

We are almost at the stage where a multi�module
neural network can play a good game of table ten�
nis within the current environment� The next stage in
the work is to take the most successful neural network
individuals and apply tournament based evolutionary
methods to evolving successively better individuals�
The current implementation of the game has been

designed to be an accurate simulation of a real� but
��dimensional� table tennis environment� There are
several ways the set up can be varied� The game
can be made simpler by eliminating the e�ects of air
resistance and spin� Alternatively� the parameters
which control these can be adjusted to increase their
e�ect� hence making the game more di�cult�
Other ways in which the game can be made more

di�cult are extend the simulation to a three dimen�
sional environment� make the robot controllers act
on some multi�segment robot arm in order to control
the bat� rather than applying forces directly to the
bat as they do now� limit the amount of computation
allowed for each controller at each timestep� This
would have the e�ect of favouring controllers who
could not only play a good game� but do it within
some bounded amount of computation� Before these
are explored� however� there is plenty of scope for
improving the performance of the current robot play�
ers�
There has been a good deal of interest around the

world in our virtual table tennis project� and it is
planned to hold an internet�based virtual table ten�
nis tournament� The idea is that people wishing to
enter a competitor would submit the code for their
controller �having already developed it and tested it
on their own machine� � the newly submitted control�
ler would then be pitted against a league of all the
best controllers so far submitted� and if su�ciently
successful� earn its own place in the league or other�
wise be discarded� Over time it would be interesting
to see the type of architectures that dominate the
tournament� and the kind of games they play� To
facilitate this� we are currently porting the simulator
to JAVA� and also working out details of a GUI�based
neural network controller design system�

� Conclusions

This paper has described a framework that allows
the development and evaluation of robot controllers
for a simulated table�tennis environment� The cur�
rent status of the project is that algorithmic control�
lers have been designed that play a good game of
virtual table tennis� The initial experiment to train

a single feed�forward neural network to play virtual
table tennis was largely unsuccessful� with the single
neural controller struggling to maintain a rally of
more than about � shots� hence proving no match
for the algorithmic controller�
The modular neural networks are far more prom�

ising� and a successful bat controller has been con�
structed using a neural network for prediction of the
intercept point� a neural network for the calculation
of the intercept velocity� and an algorithmic module
for seeing that the bat achieves the desired intercept
velocity at the chosen place and time�
Already the project has generated a good deal of

interest on the internet� This will hopefully increase
when the Java version of the simulator becomes avail�
able� which will include a system for the interact�
ive design of robot controllers� and an easy means
for people to participate in an internet�based tourna�
ment�
Finally� this kind of work provides a natural bridge

into the design of real robot game players �i�e� to
play table tennis against each other� and�or against
humans on a real table tennis table�� By developing
the details of the robot controller in a virtual envir�
onment� much of the design work can be done much
more quickly than if having to deal with real robots�
Although not a feature of the current implementa�
tion� it is of course possible to implement models of
real robots within our simulated environment�

Related www sites

For more information on the project and related links�
or to download our table tennis simulator� visit our
project home�page http���giwww�essex�ac�uk�

References

��	 A� Wieland� �Evolving controls for unstable sys�
tems�� in Proceedings of the ���� Connectionist

Models Summer School �D� Touretzky� J� Elman�
T� Sejnowski� and G� Hinton� eds��� pp� �� � ����
San Francisco Morgan Kaufman� �������

��	 F� Gruau� D� Whitley� and L� Pyeatt� �A compar�
ison between cellular encoding and direct encod�
ing for genetic neural networks�� Neuro�colt tech�

nical report series NC�TR�������� �������

�
	 D� Fogel� �Using evolutionary programming to
create networks that are capable of playing tic�
tac�toe�� in Proceedings of IEEE International

Conference on Neural Networks� pp� ��� � ����
San Francisco IEEE� ����
��


