IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS)
October 30 - November 5, 2000. Kagawa University, Takamatsu Japan.

A New Algorithm for computing Minimum
Distance

K. Sundaraj , D. d’Aulignac & E. Mazer

Inria'’ Rhne-Alpes & Gravir? , SHARP Project

Zirst. 655 avenue de I’Europe. 38330 Montbonnot Saint Martin. FRANCE
Email : [ Kenneth.Sundaraj , Diego.d_Aulignac , Emmanuel. Mazer | @Qinrialpes.fr

Tel : [+33](0)4 76 61 5270
Fax : [+33](0)4 766152 10

July 11, 2000

Abstract

This paper presents a new algorithm for computing the minimum distance between
convez polyhedras. The algorithm of Gilbert-Johnson-Keerthi (GJK) and the algo-
rithm of Lin-Canny (LC) are well-known fast solutions to the problem. We show
how a mizx between LC’s idea and the GJK’s algorithm can be used to solve the
problem. In our algorithm, we use local methods to calculate the distance between
features and new ’‘updating’ conditions to add stability. These new conditions
enable us to ensure more stability when compared to GJK. We also modify our
terminating conditions to add robustness to our approach. Our experiments also
show that the expected running time of our approach is constant, independent of
the complexity of the polyhedra. We present some comparisons of our method with
GJK.

Keywords — Minimum Distance, Collision Detection, Dynamic Simulation and
Virtual Reality.

nst. Nat. de Recherche en Informatique et en Automatique.
2Lab. d’Informatique GRAphique, VIsion et Robotique de Grenoble.



A New Algorithm for computing Minimum Distance

K. Sundaraj , D. d’Aulignac & E. Mazer

INRIA Rhone-Alpes (SHARP Project)
ZIRST. 655 avenue de ’Europe
38330 Montbonnot Saint Martin

FRANCE

email : { Kenneth.Sundaraj , Diego.d_Aulignac , Emmanuel. Mazer } Q@inrialpes.fr

Abstract

This paper presents a new algorithm for comput-
ing the minimum distance between convex polyhedras.
The algorithm of Gilbert-Johnson-Keerthi (GJK) and
the algorithm of Lin-Canny (LC) are well-known fast
solutions to the problem. We show how a miz between
LC’s idea and the GJK s algorithm can be used to solve
the problem. In our algorithm, we use local methods to
calculate the distance between features and new ’updat-
ing’ conditions to add stability. These new conditions
enable us to ensure more stability when compared to
GJK. We also modify our terminating conditions to
add robustness to our approach. Our experiments also
show that the expected running time of our approach
is constant, independent of the complexity of the poly-
hedra. We present some comparisons of our method
with GJK.

1 Introduction

Recently, it has been shown that many problems
in the robotics field and other related domains can be
solved with efficient algorithms that solve the mini-
mum distance problem. Solutions to these problems
typically use the mathematical model of the objects
to find a point on each object such that the distance
between them is minimized. @ Minimum distance
computation has found wide applications especially
in collision avoidance, path modification, optimal
path planning, dynamic simulation and virtual reality.

In certain cases, distance computation is used for
collision detection. Collision treatment is consid-
ered fundamental in graphics animation and CAD

application. Needless to say collision detection is a
bottle neck for a large number of geometrical based
algorithms and in particular, dynamic based simu-
lations. In this area, distance computation becomes
very critical. We have implemented such algorithms
in our dynamic simulator - AlaDyn3D. The results of
these tests can be found in [11], [1] and [7]

Two well known algorithms for efficient minimum
distance calculations between convex polyhedra is
the Gilbert-Johnson-Keerthi (GJK) algorithm [2] and
the Lin-Canny (LC) algorithm [3]. Sometimes, both
these algorithms suffer from several drawbacks. Nagle
in [8] has noted that the GJK algorithm sometimes
encounter configurations of objects that cause it
to loop infinitely. This problem according to [6] is
related to the Minkowski set difference of the objects.
[6] also mentions that the main source of GJK’s
numerical problems is due to the rounding errors that
accumulate in the Distance Subalgorithm of GJK.
In fact, [6] goes on to explain the instability of the
terminating conditions in the GJK algorithm. On
the other hand, LC’s algorithm which is based on the
utilization of woronoi regions requires an exhaustive
data structure (at least when compared to GJK) to
model the objects. [6] finds that for large number of
vertices, LC’s algorithm will suffer from translational
and rotational velocity variations as reported in
[6]. A comparison of LC’s performance over GJK
under various density variations is also given in [6].
Nevertheless, with some minor modifications, both
algorithms give almost constant time complexity for
most applications as reported in [4] and [5].

In this paper, we present a new algorithm for
finding and tracking the closest points on a pair of



convex polyhedra. The method works by finding and
maintaining the pair of closest features (vertex, edge,
or facet) as LC’s algorithm. At this point, we avoid
taking the Minkowski set difference of the cached
features but use local methods to calculate the dis-
tance between them as in [3]. We note that GJK uses
the Minkowski set difference and solves them using
linear algebra. Unlike LC’s algorithm which updates
it’s features after having failed certain applicability
criteria using boundary and coboundary information,
we update our features using GJK’s support function.
Here, we make some changes. Instead of modifying
both features, we change only one and move on to the
verification stage. We can verify the validity of the
points returned by the local methods by treating them
directly to the specification of the convex sets in terms
of their support properties, which for polytopes, can
be obtained easily from their vertices. Finally, as for
terminating conditions, we use the ones suggested in
[6]. This condition seems to solve most of GJK’s ter-
minating problems and as such we consider it suitable.

The rest of the paper is arranged as follows. Section
2 outlines the required object representation and some
basic definitions. Section 3 will give a brief descrip-
tion of the GJK and LC algorithms for the readers who
are unfamiliar with them. The advantage of our local
methods for computing the distance between features
will be explained in Section 4. The general descrip-
tion of our algorithm will be presented in Section 5.
Section 6 will present some results of our approach us-
ing problematic configurations of objects and timing
comparisons with GJK. Section 7 will end this paper
with the summary and conclusion.

2 Representations and Definitions

The approach described in this paper assumes
the underlying model of each object as represented
by a convex polyhedron or as a union of convex
polyhedra. Surface representation is represented by
polyhedral approximations which in turn depends
on the resolution (number of vertices). Non-convex
objects are subdivided into convex pieces and hier-
archically represented. FEach polyhedra is described
by its ’Doubly Connected Edge List (DCEL)’ data
structure [9]. Nevertheless, our approach will even
work for a data structure made up of a list of vertices
alone, though a bit slower.

Let S4 and Sp define the set of points that form
the surface of objects A and B respectively in R3. Sa

and Sp: will then define the space exterior to A and
B (the interior space is also defined in the same way,
but is irrelevant to this analysis as we do not intend to
treat collision at the moment). The positive distance
between objects A and B is defined as the pair of
features which contain the closest points. The distance
between objects A and B is the shortest Euclidean
distance, denoted by d(A, B), defined by

d(A,B)=min||lz—y]| : z€A,yeB (1)

and let X4 € S4,Xp € Sp be such that
d(A,B) = || Xa—-Xg]| (2)

where X 4 and Xp are a pair of closest points between
objects A and B.

3 Overview of GJK and LC
GJK Algorithm

This algorithm is an iterative method for comput-
ing the distance between convex objects. It is fairly
easy to implement, simple and applies well to general
convex polytopes.

The most important information in this algorithm
is a group of 1-4 pairs of vertices which is used to
construct the translational configuration space obsta-
cle (TCSO) [5]. The idea is that the minimum dis-
tance between objects A and B is given by the distance
between the origin, O and the T'SCO in the transla-
tional configuration space. The T'SCO is constructed
by taking the Minkowski set difference of these ver-
tices. We can then express the distance between x € A
and y € B in terms of their Minkowski set difference,
A—B as

d(A, B) = min || v(A = B) || (3)

where v(T'SCO) is defined as a point of the TC SO
nearest to the origin, such that

[|v(TCSO) || =min ||z] : 2€TCSO  (4)
If we consider four or fewer vertices in the point set
of the T'SCO, then we will have a simplex. GJK
then solves this simplex by using the Distance Sub-
algorithm to find a witness point, u. Such a point
then defines a function g,(z) where

gu(z)=u-u—u-z (5)



If each vertex, z of the T'SC'O satisfies the terminating
condition

gu(z) =0 (6)

then u is indeed the closest point from the origin to
the TSCO. Otherwise, a point of the TSCO that
maximizes —u-z will have to be found. The support —
function of GJK does exactly this and is expressed as

mazr (—u-z) = maz (u-z)+mazx (u-y) (7)

Readers who would like to know how the Distance Sub-
algorithm of GJK solves each simplex can refer to [2]
for more details. It is in this function that most of the
numerical problems emerge and feasible solutions are
proposed in [2] and [6]. Application of hill-climbing
to GJK can be found in [5]. With hill-climbing, [4]
reports that this algorithm has constant time com-
plexity and roughly performs a total of 104 arithmetic
operations.

LC Algorithm

For this algorithm, object representation must fol-
low [3]. Basically, given two initial points, say p and
¢, which belong to object A and B, let

(Sar s Sp) € (Vrp , Vig) (8)

where F', is the feature that point x belongs to, V, is
the Voronoi Region [9] of feature « and S,, the set of
points that define V.., LC’s algorithm check if

pGSBr anquSAz (9)

LC uses three applicability criterion functions namely
Point-Vertex, Point-Edge and Point-Face to verify (9)
and if any of these tests fails, with some additional
returned information using boundary and coboundary
features, LC is able to 'walk’ to a new pair of features
whose minimum distance is guaranteed to be closer
than the old one. Thus, it is clear that this algorithm
will terminate in a number of steps at most equal to
the number of feature pairs. [4] reports that LC has
the same expected cost as the Enhanced — GJK and
performs roughly a total of 111 arithmetic operations.
A detailed explanation of this algorithm can be found
in [3].

4 Local Method Computations

Since the only possible feature pairs that could re-
alize the minimum distance is point-point, point-edge,

point-facet and edge-edge, we only need to formulate
efficient and robust methods to solve them. We have
found the algorithms by [10] to be suitable for our
applications. We extract some important notes from
the web site and cite them here. The advantage is
that we arrive at the solution for each possible feature
pair with at most performing 1 division. Except for
the point-point case, the others need detailed analysis.
We begin with the analysis of point-point.

Point-Point

The divisionless distance function (2, between point
Py and P, is given by

Q=[P —P| (10)
Point-Edge

Let the point be P. The edge, E can be expressed
as a line segment by

E(t) =B +tM (11)

where B is a point on the line, M is the line direction
with ¢t € [0,1]. If || M || 2 < e, where € is a user
defined value to denote minimum edge length, then
t = 0 and we consider the edge as a point and use
point-point analysis. Otherwise, let

t'=M-(P-—B), t"=M-M (12)

The distance function Q(t), from point P to the edge
E is given as

|P=(B+M)| ift'>1t" <t
| P-B| if ' <0

| P—(B+ 4&M)| otherwise

Q(t) =

(13)
The operation tt—,l, is left to the end and is only per-
formed if necessary.

Point-Facet

The problem of finding the minimum distance be-
tween a point P and a facet F', defined as

F(S,t) =B+ SEO + tEl (14)

where Ey and FE; are two edges of the triangle,
(s,t) € R ={(s,t) : s € [0,1),t € [0,1],s +t < 1} is
obtained by computing (s’,t') € R corresponding to
a point on the facet closest to P.



Leta = EO'EO y b= EO'E1 , C= El'El s d= EO'(B—
P),e=—E -(B—P)and f=(B—-P)-(B—P). It
ac — b% < p, where pu is a user defined value, then the
two edges of the facet are not linearly independent
and we will then treat the facet as an edge and use
point-edge to solve the problem. Else, the minimum
squared-distance function is given as
Q(s,1) | Eo(s) — Ex(t) || *
as® + 2bst + ct® + 2ds + 2et + f  (15)

The aim is to minimize Q(s,t) in R. The method to
obtain the minimum distance for each region can be
obtained from [10]. But, we would like to note that at
most 1 division is computed with the denominator as
ac — b,

Edge-FEdge

Let us denote the two edges as line segments rep-
resented by

Eo(s) = Bo+sMy , Ei(t) = B, +tM; (16)

for s € [0,1] , t € [0,1]. In this case the minimum
squared distance function Q(s,t) for (s,t) € [0,1]? is
given as

Q(s,t) = |l Eols) — Ex(t) ||
= as® +2bst +ct® +2ds +2et + f (17)

Wherea:Mo'Mo,b:—Mg'Ml,C:Ml'
Ml, d:Mg'(BO—Bl), e:—Ml-(Bg—Bl) and
f=(Bo— B1)-(By — By). For this function @

ac—b>= || MoM;, || ? >0 (18)

If ac—b? > 0, then the two edges are not parallel, else
if ac — b> = 0, then the two edges are parallel. For
the non-parallel case, our aim is to minimized Q(s,t)
in [0,1]. Readers are referred to [10] for solutions to
the parallel and non-parallel case. In this case also,
at most 1 division is required and the denominator in
this division is ac — b2.

We end this section by noting that for the edge-
facet case, we use methods as explained in [3] to re-
duce the dimension of the combined feature. [10] gives
a method to perform a similar operation for facet-facet
but in all our experiments, we have never encountered
such a case and thus we consider it irrelevant for our
application. Another method which we use is to re-
cycle the features to obtained the correct minimum
distance feature.

5 Description of the Algorithm

In this section, we will explain how our approach
is executed. We assume that the objects A and B are
initially separated. We begin with a random point
from each object. Let F4 and Fp define the feature
formed by the set of points taken from A and B re-
spectively. Since our models are represented by points
and form features of vertices, edges and facets, it is
clear that for convex objects, we can uniquely express
d(F4,Fp) as distance between one of the following
feature pairs : point-point,point-edge,point-facet and
edge-edge. The minimum distance between an edge
and a facet or a facet and another facet can always
be expressed as one of the above feature pairs.

Depending on the kind of features that we cache at
each iteration, the local distance method will calculate
the minimum distance between these features and
if necessary, update the cached features. It is here
that we make some changes with respect to GJK.
As we have mentioned before, we use GJK’s support
function to update our features. In our approach, we
apply this function to one object at a time. After
applying, if we find a new point, we update this
feature and verify if the new formed feature is stable
or not. If the formed feature is unstable, there could
only be 2 possibilities: the object size is too small
or the feature of that object is too small. In either
case we terminate immediately without moving on
to the verification stage. If the feature is stable,
then we apply our local distance methods to get the
distance. If this distance is not the minimum, we
proceed to the other object and repeat the process.
Such a method ensures that all the features formed
are entirely stable. Then our local distance methods
have no problems getting the distance values. Hence,
the entire approach becomes stable.

This minimum distance vector when obtained, is
then verified using the modified terminating condition
mentioned in [6]. We repeat it here for clarity sake.

if { d(Fa,Fb) <= Ae } end;
else if { d(Fa,Fb)-Me <= d(Fa,Fb)*Re } end;
else update (Fa) or (Fb)

where A, is the user defined absolute error that de-
notes collision and R, is the relative error at the k-th
iteration derived by

d(A, B)e_1 - d(Fa,Fp)s
|| d(A, B)k—1 ||
M, (k) = maz { Re(k — 1), Re(k) } (19)

R (k) =




If the terminating condition is not satisfied, then we
use the support function of GJK to get the new sup-
port points. These points are then added to the set
Fy4 or Fp and the process is repeated. We note here
that with some neighbouring adjacency information of
a polytope the cost of computing a support point of a
convex polyhedra can be reduced to almost constant
time. This technique is well known as hill climbing
and has been implemented in the Enhanced-GJK ver-
sion [5]. Our experiments were carried out with this
option available. Finally, at termination, X4 and Xp,
a pair of closest points is computed as follows.

Xa=)Y ANFa,, Xp=Y v;Fs, (20)

i1 j=1

where Fa; and Fp; are points that make up the set
F4 and Fg respectively whereas A; and vy; are coefli-
cients that we derived previously from the local dis-
tance method. They are obtained by solving equation
(10),(13),(15) or (17) depending on the features that
realize the minimum distance.

6 Experimental Results

We present some experimental results here to
shown that our approach is workable. We compare 2
main aspects of the algorithm: Robustness and Tim-
ing. Robustness : There are basically 3 problems
in GJK as reported by [5]. They are the terminating
conditions, the Distance Sub-Algorithm and the
geometry of the objects. As stated before, we have
improved our terminating conditions by using the
ones presented in [5]. The Distance Sub-algorithm as
used in GJK has been replaced by our local methods
which is able to handle unstable simplices such as:
an edge too small, a facet with 2 dependent edges
and parallel edges. Further constraints can also be
added such as when the objects are too far away.
Thus what remains to be verified in our approach is
for certain configurations of objects. According to [9],
two problematic configurations are when the objects
are too close and when they differ in a few orders of
magnitude. We used 2 cubes and 2 tetrahedrons to
test our approach. The results are given below

Ezxperiment 1 : 2 very small tetrahedrons very near

Object Edge Length Vertices
Tetral le-23 4
Tetra?2 le-23 4

| | Distance apart : 20e-23 | |

Ezxperiment 2 : 2 cubes very close and of different
orders in magnitude

Object Edge Length Vertices
Cubel 2000 8
Cube2 le-15 8

Scaling Factor : 10e39
Distance apart : 1e-10

Each of the above experiment was repeated about
100 times under different rotational velocities. We
encountered no numerical problems for any of the
above using our approach. Timing : We compared
the execution times of the algorithm with Cameron’s
enhanced GJK hill-climbing algorithm®. he objects
tested are randomly generated convex polyhedra. For
a pair of objects one is placed at the origin while
we apply a continuous translation to the other object
through 10e4 little incremental displacements.
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Figure 1: Enhanced GJK: Time for continuous trans-
lation with (dashed) & without (solid) tracking info.

Figure 1 shows how the timings evolve with increas-
ing object complexity. When no tracking informa-
tion is used we obtain a linear relationship between
complexity and execution time. However, when mak-
ing use of this information the time is almost con-
stant (0.36s on average). When repeating this ex-
periment with our approach we obtain the plot given
in Figure 2. We observe the same linear and near-
constant relationship without and with tracking in-
formation. However, with our approach the time in-
crease is slower with rising complexity of the objects,

IThe code used was downloaded from
http://www.comlab.ox.ac.uk/ cameron/distances.html



and the near-constant time drops to 0.24s on aver-
age. For the experimental results shown in Figure 3
we placed two objects with 50 points each a given dis-
tance apart and then applied a continuous rotation
over 10e4 steps to one of them. The plot shows how
the timings evolve for different rotational velocities.
The tracking information is used, of course. We ob-
serve that our approach gives lower timings even at
high rotational speeds as compared to the enhanced
GJK method. These results were obtained using a SGI
Octane (195MHz), and the code was compiled using
the CC compiler with -Ofast optimisation. However,
some caution should be taken when interpreting these
results, since they represent a purely practical analy-
sis.
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Figure 2: Our approach: Time for continuous trans-
lation with (dashed) & without (solid) tracking info.
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Figure 3: Evolution of the time for a continuous rota-
tion with different rotational velocities (z-azis).

7 Summary and Conclusions

We have shown in this paper a new algorithm to
solve the minimum distance problem. This can be
done by using the caching of features method like in
LC’s algorithm and using local methods to compute
the distance between them. With our local meth-
ods and the 'updating conditions’ using GJK’s support
function, we are able to add more stability. With ex-
periments using problematic configuration of objects
as described in [6], we have no numerical problems.
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